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A variational procedure is implemented to investigate the propagation of cw Gaussian beams in a
saturable medium with and without loss. The saturation is modeled by taking into account higher-order
terms in the intensity-dependent refractive index. In the lossless case, exact analytical expressions for
the behavior of the spot width are determined, along with the condition for steady-state propagation.
Gaussian beams under dissipation are also considered, and the results agree with recent numerical simu-

lations.

PACS number(s): 42.79.Gn, 42.82.Et, 42.65.Jx

I. INTRODUCTION

Solitary wave solutions have been known to exist in a
variety of nonlinear, dispersive media for many years. In
the context of optical communications, Hasegawa and
Tappert [1] first made the important observation that a
pulse propagating in an optical fiber with Kerr-law non-
linearity can form an envelope soliton. This offered the
potential for undistorted pulse transmission over very
long distances, but it was several years before improve-
ments in fiber and source technology allowed Mollenauer,
Stolen, and Gordon [2] to experimentally demonstrate
soliton propagation in fibers. Since that time, spectacular
advances have been made in the development of experi-
mental, high-capacity, long-distance transmission sys-
tems using solitons [3].

Just as a balance between self-phase-modulation and
group-velocity dispersion can lead to the formation of
temporal solitons in single-mode fibers, it is also possible
to have the analogous spatial soliton, where diffraction
and self-focusing can compensate for each other [4]. It is
well known that optical beams propagating in a Kerr-law
medium with two transverse dimensions are unstable at
the critical power where self-focusing occurs [5]. Hence,
for a spatial soliton to be realized, diffraction must be
limited to one transverse direction. Spatial optical soli-
tons have recently been observed [6] in single-mode pla-
nar waveguides, where confinement is provided in one
transverse direction by a linear refractive-index difference
and in the orthogonal direction by self-trapping due to an
intensity-dependent refractive-index variation.

A soliton is a particular solution of the wave equation.
Since analytical solutions are known for only a few cases,
investigations into the properties of solitons are normally
performed numerically using such approaches as the
beam propagation method (BPM) [7]. However, it is
often desirable to have an analytical model describing the
dynamics of pulse propagation in a fiber. To this end,
various approximation methods have been developed,
such as perturbation [8], equivalent particle [9], and vari-
ational methods [10].

Recently, much attention has been given to the varia-
tional approach [11]. It is able to provide succinct infor-
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mation about the various parameters that characterize
the beam that could be used for the design of waveguides.
Numerical results indicate that the variational approxi-
mation is a good one [12]. A variational treatment of the
wave equation has been shown to be relatively accurate
for a large range of incident powers of the incoming
wave.

A variational approach was employed by Anderson
[13] in order to describe the main characteristics of the
temporal soliton as determined by the cubic nonlinear
Schrodinger equation (NLSE). These results are equally
applicable to the spatial solitons. In real materials, the
nonlinearity will not be of pure Kerr-law form, but will
saturate. In this paper, we extend the analysis of Ander-
son to model saturation effects by including a quintic
term in the NLSE.

The inclusion of a fifth-order nonlinearity is not merely
a mathematical generalization of the cubic NLSE, but
arises physically from the retention of higher-order terms
in the nonlinear polarization tensor. This leads to a re-
fractive index of the form

n=ny+in+n,|E[*—n,|E|*, (1)

with E being the electric field transmitted in the
waveguide, n, the linear refractive index of the medium,
7 the medium loss, and n, and n, the third- and fifth-
order nonlinear coefficients. Thus an intense beam would
be required to make n,|E|* of the same order as n,|E|>.
In spite of this, there appears to be both theoretical and
experimental interest in fifth-order nonlinear effects
[14-17].

Exact solutions for the TE polarized nonlinear waves
guided by an interface between a linear medium and a
saturable, self-focusing medium modeled by Eq. (1) have
been published along with the numerical investigation of
their stability [14]. Also, the interaction of solitons tak-
ing into account the fifth-order nonlinearity in the refrac-
tive index was recently studied numerically [15]. On the
experimental side, fifth-harmonic generation in Ne and
Ar with laser pulses focused to intensities in the
103-10'* W/cm range have been performed [16], as was
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a determination of the nonlinear fifth-order susceptibility
of InSb at 10.6 um [17].

The purpose of this work is twofold: first, to under-
stand the effect of the fifth-order nonlinearity compared
to the cubic nonlinearity alone; and, second, to obtain ex-
plicit solutions for the dynamical behavior of the
beamwidth and other parameters, which eluded previous
authors [18].

II. THEORY

Losses are, of course, inevitable in real materials. The
Kramers-Kronig relation dictates that at least linear ab-
sorption must accompany nonlinear refraction. Thus we
consider the wave equation (for cw beams)

2B %—zE—+yE OF g —kin¥x,alEPE =0,

ox

()

where n(x,a|E|*)=n}+a,|E|>*—a,|E|* and y=k37n*/
2B. Equation (2) will be solved variationally by assuming
a trial function of the form

E(z,x)= A (z)exp[ —x2%/2a%z)+ib(z)x?] . (3)

If we let B2=k3n3 and make the amplitude transforma-
tion E =1e ~ 7%, then the above equation can be written as

2iB%‘zk+—"1i+koa e "2\ Hp—kda,e T4 Y| *Y=0 .
4)
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where
2
=i ’nll—‘d'— -(.;:é —1kdae "yt

+1k3a,e 47 yl¢ .

We assume initially that the input cw wave is a Gaussian,

—x2/2a(2)

$(0,x)=Be : ©6)

where B, and a, are the initial amplitude and spot width,
respectively. Subsequent evolution in the medium is then
assumed to be specified by

W(z,x)=B(z) exp[ —x2/2a*(z)+ib(z)x?] , @)

where the amplitude B(z), spot width a(z), and inverse
wave front curvature b(z) are all allowed to vary with
propagation distance. On account of the above ampli-
tude transformation, we have

A(z)=B(z)e "%, (8)

and B(z)=|B(z)|e'*?, with ¢(z) being the longitudinal
phase. By substituting Eq. (7) into the variational princi-
ple and integrating over the transverse coordinate x, we
obtain the so-called “reduced” variational principle given
by

8 [Lgdz=0, ©)
The wave equation can be reformulated as a variational
equation according to the variational principle where
J
— —~ 2 —2vzy/ k2 Yzq/
iB |,dB* _,dB 2 .| a®Vr | |B|®WVr kpase T s 0028 6
Lg=-*—|B=——-B Vr+|B +2b + - B B
¢~ %4 d 1Bl B 2 4a wa Bl ——mIBl%
(10)

By deriving the Euler-Lagrange equations for B, B*, a,
and b, we obtain after some algebra the following set of
coupled ordinary differential equations:

b(z)=2—’if1—z : (11a)
2 kiae 2r? 2k2 a,e 4z
pda_ 1 _Zo%f T 5% I (m)
z a 2V2  a 3v'3 a
2pd% 1| 3V2kiae " | dkgae ™ p
dz a? 8 a 3V73 a?’
(11c)

and |B(z)|’a=|By|%ay=1 is a constant of the motion of
Eq. (4). This system of equations has no analytic solu-
tions. However, we initially look at the lossless case, by
setting ¥ =0, and show that in that case, an analytic solu-
tion can be found.

III. BEAM DYNAMICS IN A LOSSLESS MEDIUM

In the case of lossless Gaussian propagation in the
saturable nonlinear medium, we set ¥ =0. Recent at-
tempts to determine analytic solutions for the spot width
of temporal Gaussian solitons in a saturable nonlinear
medium via the invariants of the nonlinear wave equation
have failed [18]. It was pointed out [19] that the ansatz
employed in [18] did not conserve power, which conse-
quently led to unphysical results such as the prediction of
pulse width collapse at a finite distance of propagation.

We will now show that the above system of differential
equations has an analytic solution. To do this, we focus
our attention on Eq. (11b) since, once a (z) is determined,
b(z) and ¢(z) can also be found, and thus a knowledge of
the dynamical behavior of the cw beam can be ascer-
tained.

We normalize the spot width to the initial spot width
by letting y (z)=a(z)/a, so that Eq. (11b) becomes
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d _2u v 2
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B dzz_ 3 2+ 3 (12)
y y y
with
__1 = kja,|B,l* - kja,|Bol*
K 2a} "’ 2\/§a(2, ’ 3v3a}

For the lossless case, it is not difficult to show, upon in-
tegration, that the spot width satisfies the dynamical
equation

2
B |ady =
> dzl+ll(y) 0, (13)
where
A
ny)=&-YX+ 2 _(u—v+r). (14)
y2 oy y?

The behavior of the spot width is controlled by the nature
of the potential function II(y), as the equation can be in-
terpreted as a “point mass” under the influence of the po-
tential. It is clear that as y —0", II(y)— o, and that as
y— o, [I(y)—>—(u—v+A). We note also that I1(1)=0.
We are able to find solutions for the spot width by look-
ing at the integral

:t‘/iz= r__dy (15)
B 1 vV —II(y)

and the type of solution will depend on the (u,v,A) pa-
rameter space we choose.

In Fig. 1, the potential function II(y) is plotted for
different regions of the (u,v,A) parameter space. The
nature of the potential function allows us to subdivide the
J
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FIG. 1. Qualitative plot of the potential function II(y) in the
(u,v,A) parameter space: v=<p-+A (dashed-dotted curve);
p+A<v<2(u+A) (dashed curve); v>2(u+A) (solid curve).

parameter space as follows: (a) p+A—v=0; (b)
pu+A—v<0, with two subregions (i) u+A<v<2(u+A1),
and (ii) v>2(pg+A). The dynamics of the beam in each
of these regions will now be investigated.

(@) p+A—v=0. For v<u+A, the spot width once
released at y =1 will monotonically increase. The com-
bined effect of linear diffraction and the fifth-order non-
linearity overcome the cubic nonlinearity, so no stable
solution exists.

In the limiting case v=pu + A, the solution is given by

3 2(28+Mz=(y vy =1, (16)

and quite clearly the Gaussian beam is diffracting as the
spot width y increases with increasing z. For the more
general case, we let {=v/(u+A) and find solutions given
by

20=8){(y =Dy +1/(1=E) ]} 2+2(1 &)y +¢&

\/2(y+l)z= (y =Dy +1/(1=8)] ¢
B 1-¢ 2(1—-¢)%2

For very large y, the spot width increases according to

VAUu+ A N1—2F)
)~ Y2F=0) 18)

B

(b) u+A—v<0. In this region, we see that the poten-
tial function has a minimum [i.e, II'(y)=0] at
Ye=2(u+A)/v, and zeros at y,=1, y;=—(u+A)/
(u—v+A). We further note Il(y,)=—[2(u+A)—v]*/
4(u+A)<0,asu>0and A=0.

(i) p+A<v<2(u+A). In this region, the potential
function has two real roots with y, >y,. Here, a beam
with y, =1 would initially diffract until it attains the larg-
est possible value at y;, at which stage self-focusing
effects become dominant and the spot width decreases,
returning to its minimum value y,. As the spot width ex-
ecutes a homoclinic orbit, the resultant behavior is oscil-
latory.

The solution for the spot width in this region is given
by

¢ ] .7

I

VIEFR)  _ _ ‘ (1—p)y —1/E=1)] ]”2

B e—1
+—t g 2oz =g
2(;_1)3/2 2"§ 2 ’
(19)

and the period of the oscillation is given by z,, where

VapFh)  __ g
B P (§_1)3/2 °

(20)

(ii) v>2(u+A). Here y; <y,, and thus the spot width
initially decreases until it attains the minimum value y,,
at which point it becomes sufficiently small so that
diffractive forces dominate and the spot width increases
again until it reaches maximum value y,. Once again,
the behavior in this region of the parameter space is oscil-
latory.

The solution for the spot width is given by
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with the period of oscillation given by Eq. (20).

(iii) v=2(u+A). For the special case in which
v=2(u+A), we see that y, =1 and that II'(1)=II(y,)=0.
The potential well has degenerated into a single point and
a particle released at this point will remain there. This
translates into a beam propagating undistorted. There is
an exact balance between the competitive forces of
diffraction and self-focusing. The steady-state spot width
is given by
172

LI T Sv5 Bol* | 1Bol (22)
a, °l2v2 33O o
In the case of a cubic nonlinearity, we set a,=0 and ob-
tain the value
172
Lok [ZL | 1By 23)
a, 0 2‘/5 ol »

which agrees with [13]. So we see that the steady-state
spot width is larger in the saturable medium. The corre-
sponding phase shift is given by

V2 V3
3 2a1130|2——2—9—3a2130|4 z. (24

2B4(z)=k}

Once again, for a,=0 we obtain the well-known result
for the cubic nonlinearity [13]

3v2

P (25)

a,|B0|2

2Bdo=

For sufficiently high intensities, Eq. (24) gives the possi-
bility of ¢#(z)=0, which corresponds to a localized sta-
tionary wave.

Figure 2 illustrates the beam spot width and longitudi-
nal phase variations as functions of propagation distance
for the different regions of the (u,v,A) parameter space.
We have already discussed the spot width at length, so
here we shall consider the longitudinal phase shift ¢(z).
With y =0, we see from Eq. (11c) that the phase is depen-
dent on z through a(z). So if a(z) is oscillatory, then ¢,
will oscillate as well. We note that ¢, increases as a(z)
increases, and that in the linear case ¢, <0, for all z. For
the nonlinear lossless steady-state problem, ¢, may be in-
terpreted as an eigenvalue of Eq. (4), and ¢, is then the
propagation constant of the beam as seen from Eq. (24).
We also note that for the steady-state problem, ¢, is a
positive constant for all powers, indicating that the
effective index of the induced waveguide is greater than
ng.

We are now in a position to investigate the stability of
cw Gaussian beams in this (u,v,A) parameter space. Ac-
cording to Eq. (13), a perturbation from the equilibrium
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FIG. 2. Propagation dependence of normalized (a) spot
width and (b) longitudinal phase in the(u,v,A) parameter space:
(i) oscillatory self-focusing; (ii) oscillatory diffracting (iii) mono-
tonically diffracting. The initial beam width is a,.

makes d?y /dz?*#0. If a variation in the beam parame-
ters is such that it tends to re-establish the delicate bal-
ance between diffraction and self-focusing, the beam is
said to be stable; otherwise it is unstable.

Stability may be determined by performing a Taylor
expansion of the potential about the equilibrium point
y =Y,, and linearizing the dynamical equation to find

dZ
2

B )
with II"(y,)=+*/8(u+A)>. The quantity I1"(y,) is al-
ways positive, indicating stable equilibrium. The spot
width will now oscillate with the period given by

Vapth), 87 @7)
B 14 é—l :
These results agree with the well-known fact that solitons
are stable in a nonlinear medium with one transverse di-
mension; hence their potential use in all-optical devices.
In Fig. 3, we have summarized the previous discussion
in order to get a clear picture of the beam behavior in the
various regions. The solid line depicted by v=u-+A es-
tablishes the region between stability and diffraction of
the cw Gaussian beam. We will also gain further under-
standing when we discuss the effect of dissipation on the
beam in the next section.

@ =y )+ "y )y —y,)=0, (26)
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stable ing intensity. It is found that the spot width and ampli-
v=2(p+A) tude satisfy

oscillatory y(z)xe?? | |A(z)|xe 2%, (31)
self-focusing / oscillatory

diffracting

monotonically
diffracting

MAA

FIG. 3. Regions of stability and instability in the (v,u+21)
plane.

IV. BEAM DYNAMICS IN A LOSSY MEDIUM

In this section, we investigate the effect of fifth-order
nonlinearity in the presence of loss. As mentioned earlier,
if y70 then no exact solutions exist for the set of coupled
equations given by Eqgs. (11a)-(11c). We look first at los-
sy linear and Kerr media.

A. Linear medium

From the dynamical equation, we obtain the linear lim-
it by allowing v=0 (a;=0) and A=0 (a,=0). For this

case, we are able to find the exact solution given by
Ve | 2290 |
exp | ——— |,
P 1—iz/Ba}

2

E(z,x)=Be "* 1—i—%—
Bao

which is the well-known result for a Gaussian propaga-
ting in a diffractive lossy medium. We particularly note
that the amplitude of the linear wave is given by

A(z)=Be 7%, (29)

B. Kerr medium

For A=0 (a,=0), the dynamical equations reduce to
those used by Anderson [20], to investigate the properties
of temporal solitons in the presence of dissipation. The
spot width is given by

2 —2yz
BZ% = Zli _ve (30)

22 y? y?

Normally, numerical means are required to solve this
equation in order to investigate the nature of the spot
width.

It has been shown using a perturbative procedure [21]
that a soliton satisfying the NLSE preserves its soliton
character by adiabatically adjusting width to its decreas-

These results would imply that eventually the beam
width should exceed that of a linear spreading beam.
Numerical [22] results suggest that the above adiabatic
solution is only valid for small propagation distances.

For yz <<1, a good approximation to the initial evolu-
tion of the spot width [20] is obtained by assuming that
d?y /dz*=~0 in Eq. (30). This yields
172

y(z)zzliezﬂ , |4@2)|= ‘—V— Te %% (32)
v 2u

Hence we are faithfully able to reproduce the adiabatic
solutions and confirm their validity for small propagation
distances.

More recent numerical simulations [23] suggest that
the amplitude decreases initially as Be ~ 277, but finally as
Be 7% The deviation occurs when the amplitude dimin-
ishes sufficiently so that the nonlinear and diffractive
effects no longer balance each other. The spot width does
not become large in proportion to the decrease in the am-
plitude. In this case, the wave loses its soliton property
and is considered to be merely a linear wave. In such a
situation, the amplitude decreases but the spot width
remains almost constant.

For yz>>1, the importance of the nonlinearity van-
ishes, and the asymptotic evolution of the spot width is
governed by

2
iy -2 (33)
dz y
This is the equation that characterizes the pure
diffraction of a Gaussian beam, but it needs to be inter-
preted correctly. It applies after some evolution of the
wave, where diffraction dominates. In this regime, the
spot width y (z) would have expanded considerably and,
noting that diffractive forces vary as y ~!, then the force
acting on it is small. This implies that there would be
only a gradual further increase with propagation dis-
tance, which is accompanied by a decrease in amplitude
as for a linear wave. This is consistent with the numeri-
cal findings of [23].

C. Saturable medium

The equation characterizing the dynamics of the spot
width in a saturable medium is given by

2 dly _2u_ ve M 2k

de y3 y2 y3

(34)

For yz <<1, we can look at approximate solutions for
the early evolution of the beam by letting d2y /dz?~0 in
Eq. (34). We then find in the initial stages of evolution
that the spot width increases according to

p(z)m A prray 2 —2ps (35)
v v
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This rate of increase is slightly larger than that of the
beam propagating in a Kerr medium, as the fifth-order
nonlinearity aids the diffractive process (A >0). For large
propagation distances, the nonlinearity is insignificant
and we recover the asymptotic equation describing the
diffraction of a Gaussian beam propagating in a linear
lossy medium.

Numerical solutions of Eq. (34) have recently been
published for the temporal Gaussian soliton [24]. It was
found that the fifth-order nonlinearity considerably
modified the beam propagation. These numerical results
suggest the frequency at which reshaping is required to
achieve a distortionless propagation for a Gaussian beam
in a saturable medium perturbed by dissipation reduced
by a factor ~3 compared with the cubic nonlinearity.

The propagation of cw beams in waveguides is vastly
different from that in fibers for telecommunications. In
fibers, the attenuation is ~10"° um™!, whereas
waveguides for the potential use in all-optical devices typ-
ically have loss [25] given by y~10">—10"> pum~.
Hence the wave is significantly attenuated in waveguides.
We investigate the dynamics of the beam propagation in
a lossy waveguide by numerically solving the system of
Equations (11a)-(11c). The results of the numerical
analysis are depicted in Figs. 4 and 5. We have con-
sidered the situations where the spot width undergoes ini-
tial decompression and also initial compression.

We have examined two configurations, namely
V2By=0.01 um~? and V2By =0.025 um 2. Numerical

o
—

160

(b)

120

()

I
80

2 (ii)

(iii)

40

0 20 40 60 80 100

2z

B

FIG. 4. Numerical solution for variation of normalized (a)
spot width and (b) longitudinal phase with propagation in a los-
sy medium; p+A <v<2(u+A) with By /V2= (i) 0.0, (i) 0.01,
(iii) 0.025. The initial beam width is a,.
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FIG. 5. As for Fig. 4 but with v>2(u+A).

results show that the spot width of a cw Gaussian beam
initially oscillates, passing through a series of maxima
and minima before finally diffracting. The presence of
the attenuation reduces the number of oscillations. The
critical distance z, at which the beam has lost it soliton-
ic character, is V2z,/B~100 pm? and V2z./B=~40
um? for the lower and greater loss, respectively. This is
clearly seen from Fig. 4. This critical distance is in-
creased when the beam initially self-focuses (see Fig. 5).

For the longitudinal phase, ¢, cannot be considered as
an eigenvalue of Eq. (4) for nonstationary propagation of
cw Gaussian beams. Equation (11c), however, gives an in-
sight into the interplay between diffraction, nonlinearity,
and dissipation. From the numerical results, we note that
¢, is largest for lossless propagation, and dissipation has
the effect of reducing ¢,. Moreover, ¢, varies
significantly as the beam begins to behave more as if it
were a linear wave.

For the lossy case, we are not able to find the first in-
tegral of the governing equation for the spot width and
hence cannot analyze the motion on the basis of a “po-
tential well” description. However, we can use the adia-
batic idea to help us visualize the dynamics of the beam
as it propagates. We can rewrite Eq. (34) in the form

s
pdy 28 _ v | 2% (36)

v=ve 2¥Z  X=Le *7, (37)
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By making the parameter space transformation
(,v,A)—(fi,%,X), from Fig. 3 we see that as the beam
propagates it is carried across different regions of the
(@i, v,A) parameter space due to the dissipation, and is
found to execute the motion in the corresponding “poten-
tial well” in which it finds itself. We note that the period
z, is increasing until reaching some critical distance z,,
at which point the soliton property no longer holds. It is
expected that z . >>z,. For z >>z,,, the wave behaves as
though it was linear.

V. CONCLUSION

The propagation of cw Gaussian beams in a saturable
medium with and without loss has been analyzed via a
variational procedure. The dynamics of the beam can be
described by a set of coupled ordinary differential equa-
tions. In the lossless case, we were able to find exact ana-
lytic solutions for the behavior of the spot width and
were able to determine conditions under which steady-
state (“‘solitonic’) propagation was possible. Nonideal
launching of a Gaussian gave rise to an oscillatory devel-
opment of the spot width and longitudinal phase, and
these results were compared to those for a Kerr-type non-
linearity. Gaussian beams under dissipation were also
considered, and these results agreed with recent numeri-
cal simulations.
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We have not explicitly considered the situation where
A<0. We note that in that case the higher-order non-
linearity would aid in the self-focusing of the cw Gauss-
ian beams. The same type of behavior would be expected
as with A >0, but at different points on the (u,v,A) pa-
rameter space.

In this paper, we have confined our attention to the
propagation of beams in a medium with one transverse
dimension. As is well known, a beam propagating in a
Kerr medium with two transverse dimensions is unstable
to symmetric perturbations. At a certain critical power,
such beams undergo catastrophic collapse, while below
the critical power they diffract. One way to overcome
diffraction below the critical power is to use a graded
refractive-index profile in the transverse directions to re-
focus the beam [26]. On the other hand, above the criti-
cal power, a saturable medium will support stable self-
trapped beams. Karlsson [27] has shown that it is possi-
ble to realize beams that are stable to symmetric pertur-
bations in a medium with saturation modeled as a two-
level system. However, for this model, it is not possible
to obtain analytic solutions.

We have investigated the propagation of Gaussian
beams in a medium with two transverse dimensions and
saturation modeled by Eq. (1), and have obtained exact
analytic solutions for the spot width. These results will
be presented elsewhere.

[1] A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142
(1973).

[2] L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys.
Rev. Lett. 45, 1095 (1980).

[3] See, for example, L. F. Mollenauer, B. M. Nyman, M. J.
Neubelt, G. Raybon, and S. G. Evangelides, Electron.
Lett. 27, 178 (1991); M. Nakazawa, E. Yamada, H. Kubo-
ta, and K. Suzuki, ibid. 27, 1270 (1991); L.F. Mollenauer,
E. Lichtman, M. J. Neubelt, and G. T. Harvey, ibid. 29,
910 (1993)

[4] V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz. 61,
118 (1971) [Sov. Phys. JETP 34, 62 (1972)].

[S]R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev.
Lett. 13, 479 (1964); P. L. Kelley, ibid. 15, 1005 (1965).

[6] J.S. Aitchison, A. M.Weiner, Y. Silberberg, M. K. Oliver,
J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E.
Smith, Opt. Lett. 15, 471 (1990);J. S. Aitchison, K. Al-
Hemyari, C. N. Ironside, R. S. Grant, and W. Sibbett,
Electron. Lett. 28, 1879 (1992).

[7] M. D. Feit and J. A. Fleck, Jr., Appl. Opt. 17, 3990 (1978);
19, 1154 (1980).

[8] Y. Kodama and M. J. Ablowitz, Stud. Appl. Math. 64,
225 (1981).

[9] A. B. Aceves, J. V. Moloney, and A. C. Newell, Phys. Rev.
A 39, 1809 (1989).

[10] D. Anderson and M. Bonnedal, Phys. Fluids 22, 105
(1979).

[11] M. Karlsson, D Anderson, M. Desaix, and M. Lisak, Opt.
Lett. 16, 1373 (1991); J. Herrmann, J. Opt. Soc. Am. B 8,
1507 (1991); P. L. Chu, B. A. Malomed, and G. D. Peng,

ibid. 10, 1379 (1993).

[12] J. T. Manassah and B. Gross, Opt. Lett. 17, 976 (1992); R.
A. Sammut and C. Pask, J. Opt. Soc. Am. B 8, 395 (1991).

[13] D. Anderson, Phys. Rev. A 27, 3135 (1983).

[14] D. Mihalache, D. Mazilu, M. Bertolotti, and C. Sibilia, J.
Mod. Opt. 35, 1017 (1988).

[15] E. M. Dianov and Z. S. Nikonova, Opt. Quantum Elec-
tron. 22, 175 (1990).

[16] R. Rosman, G. Gibson, K. Boyer, H. Jara, T. S. Luk, L. A.
Mclntyre, A. McPherson, J. C. Solem, and C. K. Rhodes,
J. Opt. Soc. Am. B 5, 1237 (1988).

[17] A. N. An and V. 1. Kovalev, Kvant. Elektron. 14, 1685
(1987) [Sov. J. Quantum Electron. 17, 1075 (1987)].

[18] A. Kumar and M.S. Sodha, Electron. Lett. 23, 275 (1987).

[19] D. Anderson, M. Lisak, and T. Reichel, Phys. Rev. A 38,
1618 (1988).

[20] D. Anderson, Opt. Commun. 48, 107 (1983).

[21] A. Hasegawa and Y. Kodama, Proc. IEEE 69, 1145
(1981).

[22] K. J. Blow and N. J. Doran, Opt. Commun. 52, 367 (1985).

[23] S. Watanabe and K. Yoshimura, J. Phys. Soc. Jpn. 58, 821
(1989).

[24] A. Kumar, S. N. Sarkar, and A. K. Ghatak, Opt. Lett. 11,
321 (1986).

[25] L. Leine, C. Wachter, U. Langbein, and F. Lederer, Opt.
Lett. 12, 747 (1987).

[26] M. Karlsson and D. Anderson, J. Opt. Soc. Am. B9, 1558
(1992).

[27] M. Karlsson, Phys. Rev. A 46, 2726 (1992).



stable

v=2(lL+A)
osclllatory
self-focusing oscillatory
diffracting

V=UAA

monotonically
diffracting

U+A

FIG. 3. Regions of stability and instability in the (v,u+A)
plane.



